41 research outputs found

    Phase Diagram of β′\beta'-(BEDT-TTF)2_2ICl2_2 under High Pressure Based on the First-Principles Electronic Structure

    Full text link
    We present a theoretical study on the superconductivity of β′\beta'-(BEDT-TTF)2_2ICl2_2 at Tc=T_{\rm c}=14.2 K under a high hydrostatic pressure recently found, which is the highest among organic superconductors. In the present work, we study an effective model using the fluctuation-exchange (FLEX) approximation based on the results of first-principles calculation. In the obtained phase diagram, the superconductivity with dxyd_{xy}-like symmetry is realized next to the antiferromagnetic phase, as a result of the one-dimensional to two-dimensional crossover driven by the pressure.Comment: 4 pages, 3 figures. accepted for publication in J. Phys. Soc. Jpn. errors correcte

    Two-band Fluctuation Exchange Study on the Superconductivity of β′\beta'-(BEDT-TTF)2_2ICl2_2 under High Pressure

    Full text link
    We study the pressure dependence of the superconducting transition temperature of an organic superconductor β′\beta'-(BEDT-TTF)2_2ICl2_2 by applying the fluctuation exchange method to the Hubbard model on the original two-band lattice at 3/4-filling rather than the single band model in the strong dimerization limit. Our study is motivated by the fact that hopping parameters evaluated from a first-principles study suggest that the dimerization of the BEDT-TTF molecules is not so strong especially at high pressure. Solving the linearized Eliashberg's equation, a dxy_{xy}-wave-like superconducting state with realistic values of TcT_c is obtained in a pressure regime somewhat higher than the actual experimental result. These results are similar to those obtained within the single band model in the previous study by Kino {\it et al}. We conclude that the resemblance to the dimer limit is due to a combination of a good Fermi surface nesting, a large density of states near the Fermi level, and a moderate dimerization, which cooperatively enhance electron correlation effects and also the superconducting TcT_c.Comment: 6 pages, 8 figure

    Antiferromagnetic Phases of One-Dimensional Quarter-Filled Organic Conductors

    Full text link
    The magnetic structure of antiferromagnetically ordered phases of quasi-one-dimensional organic conductors is studied theoretically at absolute zero based on the mean field approximation to the quarter-filled band with on-site and nearest-neighbor Coulomb interaction. The differences in magnetic properties between the antiferromagnetic phase of (TMTTF)2_2X and the spin density wave phase in (TMTSF)2_2X are seen to be due to a varying degrees of roles played by the on-site Coulomb interaction. The nearest-neighbor Coulomb interaction introduces charge disproportionation, which has the same spatial periodicity as the Wigner crystal, accompanied by a modified antiferromagnetic phase. This is in accordance with the results of experiments on (TMTTF)2_2Br and (TMTTF)2_2SCN. Moreover, the antiferromagnetic phase of (DI-DCNQI)2_2Ag is predicted to have a similar antiferromagnetic spin structure.Comment: 8 pages, LaTeX, 4 figures, uses jpsj.sty, to be published in J. Phys. Soc. Jpn. 66 No. 5 (1997

    Effects of Spin Fluctuations in Quasi-One-Dimensional Organic Superconductors

    Full text link
    We study the electronic states of quasi-one-dimensional organic conductors using the single band Hubbard model at half-filling. We treat the effects of the on-site Coulomb interaction by the fluctuation-exchange (FLEX) method, and calculate the phase diagram and physical properties. The calculated pressure dependence of the Neel temperature coincides well with the experimental one. We also show that a pseudogap is formed in the density of states near the chemical potential and that d-wave superconductivity appears next to the antiferromagnetic state. Moreover the NMR relaxation rate increases on cooling in the low-temperature region.Comment: 4 pages, 5 figures, to apprear in J. Phys. Soc. Jp

    Spin-Triplet Superconductivity Mediated by Phonons in Quasi-One-Dimensional Systems

    Full text link
    We investigate the spin-triplet superconductivity mediated by phonons in quasi-one-dimensional (Q1D) systems with open Fermi surfaces. We obtain the ground state phase diagrams. It is found that spin-triplet superconductivity occurs for weak screening and strong on-site Coulomb interaction, even in the absence of any additional nonphonon pairing interactions. We find that the nodeless spin-triplet state is more favorable than the spin-triplet state with line nodes, for the parameter values of the Q1D superconductors (TMTSF)_2X. We also find that Q1D open Fermi surface, which is the specific feature of this system, plays an essential role in the pairing symmetry. We discuss the compatibility of the present results with the experimental results in these compounds.Comment: 8 pages, 15 figures, with jpsj2.cl

    Theoretical Aspects of Charge Ordering in Molecular Conductors

    Full text link
    Theoretical studies on charge ordering phenomena in quarter-filled molecular (organic) conductors are reviewed. Extended Hubbard models including not only the on-site but also the inter-site Coulomb repulsion are constructed in a straightforward way from the crystal structures, which serve for individual study on each material as well as for their systematic understandings. In general the inter-site Coulomb interaction stabilizes Wigner crystal-type charge ordered states, where the charge localizes in an arranged manner avoiding each other, and can drive the system insulating. The variety in the lattice structures, represented by anisotropic networks in not only the electron hopping but also in the inter-site Coulomb repulsion, brings about diverse problems in low-dimensional strongly correlated systems. Competitions and/or co-existences between the charge ordered state and other states are discussed, such as metal, superconductor, and the dimer-type Mott insulating state which is another typical insulating state in molecular conductors. Interplay with magnetism, e.g., antiferromagnetic state and spin gapped state for example due to the spin-Peierls transition, is considered as well. Distinct situations are pointed out: influences of the coupling to the lattice degree of freedom and effects of geometrical frustration which exists in many molecular crystals. Some related topics, such as charge order in transition metal oxides and its role in new molecular conductors, are briefly remarked.Comment: 21 pages, 19 figures, to be published in J. Phys. Soc. Jpn. special issue on "Organic Conductors"; figs. 4 and 11 replaced with smaller sized fil

    Strong electronic correlations in superconducting organic charge transfer salts

    Full text link
    We review the role of strong electronic correlations in quasi--two-dimensional organic charge transfer salts such as (BEDT-TTF)2X_2X, (BETS)2Y_2Y and β′\beta'-[Pd(dmit)2_2]2Z_2Z. We begin by defining minimal models for these materials. It is necessary to identify two classes of material: the first class is strongly dimerised and is described by a half-filled Hubbard model; the second class is not strongly dimerised and is described by a quarter filled extended Hubbard model. We argue that these models capture the essential physics of these materials. We explore the phase diagram of the half-filled quasi--two-dimensional organic charge transfer salts, focusing on the metallic and superconducting phases. We review work showing that the metallic phase, which has both Fermi liquid and `bad metal' regimes, is described both quantitatively and qualitatively by dynamical mean field theory (DMFT). The phenomenology of the superconducting state is still a matter of contention. We critically review the experimental situation, focusing on the key experimental results that may distinguish between rival theories of superconductivity, particularly probes of the pairing symmetry and measurements of the superfluid stiffness. We then discuss some strongly correlated theories of superconductivity, in particular, the resonating valence bond (RVB) theory of superconductivity. We conclude by discussing some of the major challenges currently facing the field.Comment: A review: 52 pages; 10 fig

    Pairing Symmetry Competition in Organic Superconductors

    Full text link
    A review is given on theoretical studies concerning the pairing symmetry in organic superconductors. In particular, we focus on (TMTSF)2_2X and κ\kappa-(BEDT-TTF)2_2X, in which the pairing symmetry has been extensively studied both experimentally and theoretically. Possibilities of various pairing symmetry candidates and their possible microscopic origin are discussed. Also some tests for determining the actual pairing symmtery are surveyed.Comment: 16 pages, 8 figures, to be published in J. Phys. Soc. Jpn., special issue on "Organic Conductors

    Pairing competition in a quasi-one-dimensional model of organic superconductors (TMTSF)2X_{2}X in magnetic field

    Full text link
    We microscopically study the effect of the magnetic field (Zeeman splitting) on the superconducting state in a model for quasi-one-dimensional organic superconductors (TMTSF)2X_{2}X. We investigate the competition between spin singlet and spin triplet pairings and the Fulde-Ferrell-Larkin-Ovchinnikov(FFLO) state by random phase approximation. While we studied the competition by comparison with the eigenvalue of the gap equation at a fixed temperature in our previous study (Phys. Rev. Lett. \textbf{102} (2009) 016403), here we obtain both the TcT_c for each pairing state and a phase diagram in the TT(temperature)-hzh_z(field)-VyV_y(strength of the charge fluctuation) space. The phase diagram shows that consecutive transitions from singlet pairing to the FFLO state and further to Sz=1S_z=1 triplet pairing can occur upon increasing the magnetic field when 2kF2k_{F} charge fluctuations coexist with 2kF2k_{F} spin fluctuations. In the FFLO state, the singlet d-wave and Sz=0S_{z}=0 triplet ff-wave components are strongly mixed especially when the charge fluctuations are strong.Comment: 11 pages, 9 figure
    corecore